Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Plant J ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38549549

RESUMEN

As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.

2.
Polymers (Basel) ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543456

RESUMEN

With the rapid growth in the global population and the accelerating pace of urbanization, researching and developing novel strategies for biomass utilization is significant due to its potential for use in renewable energy, climate change mitigation, waste management, and sustainable agriculture. In this environmental context, this review discusses the recent advances in biomass conversion technologies for biochar production, including the first carbonization process and the subsequent activation methods of the biochar derived from lignocellulosic biomass (LBC). Parallel to this, this review deals with other essential parameters in biochar production, such as feedstock types, reaction environments, and operating conditions in the pyrolysis process, to determine the production and composition of LBC. Moreover, the wide-ranging applications of LBC in areas such as adsorption, catalysts, and energy storage are discussed, offering sustainable and environmentally friendly alternatives while reducing reliance on traditional energy sources and mineral resources, thereby providing practical solutions to environmental and energy challenges. Overall, this review not only provides a comprehensive comparative analysis of different LBC preparation methods, but also facilitates a deeper understanding of the advantages and limitations of these methodologies when it comes to developing high-value materials for sustainable applications.

3.
Environ Sci Pollut Res Int ; 31(13): 20488-20498, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38376779

RESUMEN

Anaerobic ammonium oxidation (anammox) sludge is easily deactivated in the process of treating ammonia-laden wastewater. To investigate an effective recovery method, red mud-based biochar carriers (RMBC) were prepared and added to a deactivated anammox reactor; the operation of this reactor had been interrupted for 6 months with starvation and low temperature. The deactivated sludge with added RMBC was recovered rapidly after 31 days, with the specific anammox activity rapidly increasing to 0.84 g N/(g VSS∙day), and the recovery efficiency of nitrogen removal rate increased by four times compared to the unadded control. The granulation degree and extracellular polymeric substances secretion of the anammox sludge with the added RMBC were significantly higher than that of the control group. In addition, a large number of spherical anammox bacteria were observed moored at the porous channels of RMBC, and the copy numbers of functional genes of anammox bacteria were approximately twice that of the control group. Hence, RMBC is a potential sludge activator, and it can provide a "house" to protect anammox bacteria, enhance the metabolic activity and the agglomerative growth of anammox bacteria, and synergistically achieve rapid recovery of deactivated anammox sludge.


Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Aguas Residuales , Bacterias/metabolismo , Anaerobiosis , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Desnitrificación
4.
Nature ; 626(7999): 523-528, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356068

RESUMEN

Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38193238

RESUMEN

This paper extends a text classification method utilizing natural language processing (NLP) into the field of traditional Chinese medicine (TCM) compound decoction to effectively and scientifically extend the TCM compound decoction duration. Specifically, a TCM compound decoction duration classification named TCM-TextCNN is proposed to fuse multi-dimensional herb features and improve TextCNN. Indeed, first, we utilize word vector technology to construct feature vectors of herb names and medicinal parts, aiming to describe the herb characteristics comprehensively. Second, considering the impact of different herb features on the decoction duration, we use an improved Term Frequency-Inverse Word Frequency (TF-IWF) algorithm to weigh the feature vectors of herb names and medicinal parts. These weighted feature vectors are then concatenated to obtain a multi-dimensional herb feature vector, allowing for a more comprehensive representation. Finally, the feature vector is input into the improved TextCNN, which uses k-max pooling to reduce information loss rather than max pooling. Three fully connected layers are added to generate higher-level feature representations, followed by softmax to obtain the final results. Experimental results on a dataset of TCM compound decoction duration demonstrate that TCM-TextCNN improves accuracy, recall, and F1 score by 5.31%, 5.63%, and 5.22%, respectively, compared to methods solely rely on herb name features, thereby confirming our method's effectiveness in classifying TCM compound decoction duration.

6.
J Environ Manage ; 352: 120092, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38232596

RESUMEN

Heavy metals (HMs) have been widely reported to pose an adverse effect on anaerobic ammonia oxidation (anammox) bacteria, yet the underlying mechanisms remain unclear. This study provides new insights into the potential mechanisms of interaction between HMs and functional enzymes through big date analysis, molecular docking and molecular dynamics simulation. The statistical analysis indicated that 10 mg/L Cu(II) and Cd(II) reduced nitrogen removal rate (NRR) by 85% and 43%, while 5 mg/L Fe(II) enhanced NRR by 29%. Additionally, the results of molecular simulations provided a microscopic interpretation for these macroscopic data. Molecular docking revealed that Hg(II) formed a distinctive binding site on ferritin, while other HMs resided at iron oxidation sites. Furthermore, HMs exhibited distinct binding sites on hydrazine dehydrogenase. Concurrently, the molecular dynamics simulation results further substantiated their capacity to form complexes. Cu(II) displayed the strongest binding affinity with ferritin for -1576 ± 79 kJ/mol in binding free energy calculation. Moreover, Cd(II) bound to ferritin and HDH for -1052.67 ± 58.49 kJ/mol, -290.02 ± 49.68 kJ/mol, respectively. This research addressed a crucial knowledge gap, shedding light on potential applications for remediating heavy metal-laden industrial wastewater.


Asunto(s)
Cadmio , Metales Pesados , Simulación del Acoplamiento Molecular , Oxidación Anaeróbica del Amoníaco , Simulación de Dinámica Molecular , Macrodatos , Metales Pesados/química , Iones , Ferritinas , Oxidación-Reducción , Reactores Biológicos/microbiología , Nitrógeno , Aguas del Alcantarillado , Desnitrificación , Anaerobiosis
7.
ACS Nano ; 17(19): 19022-19032, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37732876

RESUMEN

The discovery of MnBi2Te4-based intrinsic magnetic topological insulators has fueled tremendous interest in condensed matter physics, owing to their potential as an ideal platform for exploring the quantum anomalous Hall effect and other magnetism-topology interactions. However, the fabrication of single-phase MnBi2Te4 films remains a common challenge in the research field. Herein, we present an effective and simple approach for fabricating high-quality, near-stoichiometric MnBi2Te4 films by directly matching the growth rates of intermediate Bi2Te3 and MnTe. Through systematic experimental studies and thermodynamic calculations, we demonstrate that binary phases of Bi2Te3 and MnTe are easily formed during film growth, and the reaction of Bi2Te3 + MnTe → MnBi2Te4 represents the rate-limiting step among all possible reaction paths, which could result in the presence of Bi2Te3 and MnTe impurity phases in the grown MnBi2Te4 films. Moreover, Bi2Te3 and MnTe impurities introduce negative and positive anomalous Hall (AH) components, respectively, in the AH signals of MnBi2Te4 films. Our work suggests that further manipulation of growth parameters should be the essential route for fabricating phase-pure MnBi2Te4 films.

8.
Nat Commun ; 14(1): 4892, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580381

RESUMEN

A representative class of kagome materials, AV3Sb5 (A = K, Rb, Cs), hosts several unconventional phases such as superconductivity, [Formula: see text] non-trivial topological states, and electronic nematic states. These can often coexist with intertwined charge-density wave states. Recently, the discovery of the isostructural titanium-based single-crystals, ATi3Bi5 (A = K, Rb, Cs), which exhibit similar multiple exotic states but without the concomitant charge-density wave, has opened an opportunity to disentangle these complex states in kagome lattices. Here, we combine high-resolution angle-resolved photoemission spectroscopy and first-principles calculations to investigate the low-lying electronic structure of RbTi3Bi5. We demonstrate the coexistence of flat bands and several non-trivial states, including type-II Dirac nodal lines and [Formula: see text] non-trivial topological surface states. Our findings also provide evidence for rotational symmetry breaking in RbTi3Bi5, suggesting a directionality to the electronic structure and the possible emergence of pure electronic nematicity in this family of kagome compounds.

9.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569874

RESUMEN

Sucrose synthases (SUS; EC 2.4.1.13) encoded by a small multigene family are the central system of sucrose metabolism and have important implications for carbon allocation and energy conservation in nonphotosynthetic cells of plants. Though the SUS family genes (SUSs) have been identified in several plants, they have not been explored in sweet potato. In this research, nine, seven and seven SUSs were identified in the cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) as well as its two diploid wild relatives I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively, and divided into three subgroups according to their phylogenetic relationships. Their protein physicochemical properties, chromosomal localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network and expression patterns were systematically analyzed. The results indicated that the SUS gene family underwent segmental and tandem duplications during its evolution. The SUSs were highly expressed in sink organs. The IbSUSs especially IbSUS2, IbSUS5 and IbSUS7 might play vital roles in storage root development and starch biosynthesis. The SUSs could also respond to drought and salt stress responses and take part in hormone crosstalk. This work provides new insights for further understanding the functions of SUSs and candidate genes for improving yield, starch content, and abiotic stress tolerance in sweet potatoes.


Asunto(s)
Ipomoea batatas , Ipomoea batatas/metabolismo , Filogenia , Diploidia , Almidón/metabolismo , Sacarosa/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Adv Mater ; 35(41): e2301790, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37497878

RESUMEN

Flat bands (FBs) can appear in two-dimensional (2D) geometrically frustrated systems caused by quantum destructive interference (QDI). However, the scarcity of pure 2D frustrated crystal structures in natural materials makes FBs hard to be identified, let alone modulate FBs relating to electronic properties. Here, the experimental evidence of the complete electronic QDI induced FB contributed by the 2D breathing-kagome layers of Nb atoms in Nb3 TeCl7 (NTC) is reported. An identical chemical state and 2D localization characteristics of the Nb breathing-kagome layers are experimentally confirmed, based on which NTC is demonstrated to be a superior concrete candidate for the breathing-kagome tight-binding model. Furthermore, it theoretically establishes the tunable roles of the on-site energy over Nb sites on bandwidth, energy position, and topology of FBs in NTC. This work opens an aveanue to manipulate FB characteristics in these 4d transition-metal-based breathing-kagome materials.

11.
Nano Lett ; 23(12): 5625-5633, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310876

RESUMEN

Kagome superconductors AV3Sb5 (A = K, Rb, Cs) provide a fertile playground for studying intriguing phenomena, including nontrivial band topology, superconductivity, giant anomalous Hall effect, and charge density wave (CDW). Recently, a C2 symmetric nematic phase prior to the superconducting state in AV3Sb5 drew enormous attention due to its potential inheritance of the symmetry of the unusual superconductivity. However, direct evidence of the rotation symmetry breaking of the electronic structure in the CDW state from the reciprocal space is still rare, and the underlying mechanism remains ambiguous. The observation shows unconventional unidirectionality, indicative of rotation symmetry breaking from six-fold to two-fold. The interlayer coupling between adjacent planes with π-phase offset in the 2 × 2 × 2 CDW phase leads to the preferred two-fold symmetric electronic structure. These rarely observed unidirectional back-folded bands in KV3Sb5 may provide important insights into its peculiar charge order and superconductivity.

12.
J Phys Condens Matter ; 35(40)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37379852

RESUMEN

RV6Sn6(R= Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures ofRV6Sn6(R= Gd, Tb, and Lu) on the two cleaved surfaces, i.e. the V- andRSn1-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe 'W'-like kagome surface states around the Brillouin zone corners showingR-element-dependent intensities, which is probably due to various coupling strengths between V andRSn1layers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices.

13.
Sci Total Environ ; 886: 163920, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156381

RESUMEN

Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.


Asunto(s)
Biocombustibles , Carbohidratos , Biomasa , Gases , Materiales Biocompatibles , Lignina/química
15.
Nat Commun ; 14(1): 2905, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217499

RESUMEN

The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed "obstructed atomic insulators", symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of obstructed surface states with partial electronic occupation. Here, utilizing scanning tunneling microscopy, angle-resolved photoemission spectroscopy and first-principles calculations, we observe spectroscopic signature of obstructed surface states in SrIn2P2. We find that a pair of surface states that are originated from the pristine obstructed surface states split in energy by a unique surface reconstruction. The upper branch is marked with a striking differential conductance peak followed by negative differential conductance, signaling its localized nature, while the lower branch is found to be highly dispersive. This pair of surface states is in consistency with our calculational results. Our finding not only demonstrates a surface quantum state induced by a new type of bulk-boundary correspondence, but also provides a platform for exploring efficient catalysts and related surface engineering.

16.
J Phys Condens Matter ; 35(15)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36764004

RESUMEN

Room-temperature two-dimensional antiferromagnetic (AFM) materials are highly desirable for various device applications. In this letter, we report the low-energy electronic structure of KMnBi measured by angle-resolved photoemission spectroscopy, which confirms an AFM ground state with the valence band maximum located at -100 meV below the Fermi level and small hole effective masses associated with the sharp band dispersion. Using complementary Raman, atomic force microscope and electric transport measurement, we systematically study the evolution of electric transport characteristics of micro-mechanically exfoliated KMnBi with varied flake thicknesses, which all consistently reveal the existence of a probable AFM ground state down to the quintuple-layer regime. The AFM phase transition temperature ranges from 220 K to 275 K, depending on the thickness. Our results suggest that with proper device encapsulation, multilayer KMnBi is indeed a promising 2D AFM platform for testing various theoretical proposals for device applications.

17.
Nat Commun ; 14(1): 1116, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849499

RESUMEN

The excitonic insulator (EI) is a Bose-Einstein condensation (BEC) of excitons bound by electron-hole interaction in a solid, which could support high-temperature BEC transition. The material realization of EI has been challenged by the difficulty of distinguishing it from a conventional charge density wave (CDW) state. In the BEC limit, the preformed exciton gas phase is a hallmark to distinguish EI from conventional CDW, yet direct experimental evidence has been lacking. Here we report a distinct correlated phase beyond the 2×2 CDW ground state emerging in monolayer 1T-ZrTe2 and its investigation by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM). The results show novel band- and energy-dependent folding behavior in a two-step process, which is the signatures of an exciton gas phase prior to its condensation into the final CDW state. Our findings provide a versatile two-dimensional platform that allows tuning of the excitonic effect.

18.
Sci Total Environ ; 862: 160713, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509278

RESUMEN

To get rid of the chrome pollution faced by the leather industry, we explored a novel engineering high-quality eco-leather technology based on the synergistic interactions between biomass-based aldehydes and Al(III). Firstly, dialdehyde xanthan gum (DXG) was prepared to covalently crosslink with the collagen fibers (CFs) via Schiff-base linkages under alkaline conditions, endowing the leather with a shrinkage temperature (Ts) of 80 °C and opening channels for the subsequent penetration of Al species (AL). Secondly, and for this latter purpose, the DXG-tanned leather was acidified to release part of the DXG from the leather according to the dynamic nature of the Schiff-base. Containing suitable oxygen-containing groups (OGs) with excellent complexation capabilities, the released DXG served as masking agents for AL, facilitating the penetration of AL into the inner CFs network for further complexation crosslinking. Consequently, a denser crosslinking network was constructed in the leather, and the crust leather exhibited higher Ts (82.2 °C), improved mechanical (tensile strength: 13.4 N/mm2, tear strength: 53.3 N/mm) and organoleptic properties than those of the DXG crust or AL crust leathers. This demonstrates that this synergistic covalence and complexation bridging strategy is a sustainable option to substitute highly restricted chrome tanning agent for eco-leather production.


Asunto(s)
Aldehídos , Humanos , Curtiembre , Biomasa , Contaminación Ambiental
19.
Front Psychiatry ; 14: 1281847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260802

RESUMEN

Background: Psychological problems often occur in college students, with the most common ones being depression and anxiety symptoms. Exploring the risk factors that influence depression and anxiety symptoms in college students is essential to promote their physical and mental health. Objective: This study aimed to investigate the independent and interaction effects of problematic mobile phone use (PMPU) and the number of close friends (NCFs) on depression and anxiety symptoms and the comorbidity of these symptoms among college students. Methods: A cross-sectional survey was conducted in Huainan, Anhui Province, and Suzhou, Jiangsu Province in China from October to December 2022. Data from 7,617 college students were collected. The Patient Health Questionnaire and Generalized Anxiety Disorder-7 were used to evaluate depression and anxiety symptoms. The PMPU data were collected by the Mobile Phone Addiction Type Scale. Multinomial logistic regression models were performed to examine the associations of PMPU and NCFs with depression and anxiety symptoms and their interaction effects. Results: PMPU and lack of close friends significantly increased the risk of depression and anxiety symptoms and the comorbidity of these symptoms in college students (p < 0.001). In addition, the effects of PMPU and lack of close friends on depression and anxiety symptoms in college students were interactive (p < 0.001). No significant sex differences were found. Conclusion: PMPU and lack of close friends are important risk factors for depression, anxiety, and the comorbidity of these symptoms in college students in China.

20.
Nano Lett ; 22(22): 8827-8834, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36367457

RESUMEN

The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...